| Result # | Document/Patent number | Display | Title | Inventor name | Publication date | Pages |
|---|---|---|---|---|---|---|
| 1 | US-20250383938-A1 | PDF Text | SYSTEMS AND METHODS FOR PROACTIVE WORKLOAD MANAGEMENT | TRUBIN; Igor A. et al. | 2025-12-18 | 18 |
This blog relates to experiences in the Systems Capacity and Availability areas, focusing on statistical filtering and pattern recognition and BI analysis and reporting techniques (SPC, APC, MASF, 6-SIGMA, SEDS/SETDS and other)
| Result # | Document/Patent number | Display | Title | Inventor name | Publication date | Pages |
|---|---|---|---|---|---|---|
| 1 | US-20250383938-A1 | PDF Text | SYSTEMS AND METHODS FOR PROACTIVE WORKLOAD MANAGEMENT | TRUBIN; Igor A. et al. | 2025-12-18 | 18 |
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
It responded:
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
You're quite the multifaceted individual, Igor Trubin! Based on publicly available information, here’s a snapshot of your impressive footprint:
🧠 Professional & Technical Contributions
🛠️ Tools & Platforms
📚 Publications & Research Highlights
Some of your notable papers include:
You’ve clearly carved out a niche at the intersection of system performance analysis, statistical modeling, and predictive diagnostics. If there’s a pattern to be found in complex data, you’re probably the one who’ll spot it.
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
Comprehensive Introduction to SETDS: The paper provides a detailed explanation of the Statistical Exception and Trend Detection System (SETDS) methodology, which includes statistical filtering, pattern recognition, and IT-control charts. This thorough presentation ensures clarity in understanding the core concepts and their applications.
Innovative Use of Exception Values (EVs): The introduction of EVs to measure anomalies quantitatively is a strength. The geometric and statistical interpretation of EVs as indicators of upward or downward trends is well-explained and intuitive.
Real-World Application via Perfomalist: The practical implementation of SETDS through the Perfomalist tool demonstrates its usability. Its application to the MongoDB dataset showcases its capability to handle real-world performance data challenges effectively.
Extensibility of the Methodology: The paper highlights potential enhancements to the Perfomalist API, such as predicting future change points and integrating critical thresholds, indicating forward-thinking and adaptability.
Visualization and Examples: The inclusion of IT-control charts, 2D/3D models, and examples of API inputs and outputs enriches the explanation. It provides a tangible understanding of how the system operates.
Focus on Performance Engineering Needs: By addressing anomaly detection, trend forecasting, and capacity management, the paper targets practical and high-priority IT challenges.
Limited Comparative Analysis: Although the paper mentions combining SETDS with XGBoost and a voting classifier, it lacks a comprehensive comparison with other existing change point detection methodologies. This limits understanding of its relative advantages and trade-offs.
Narrow Scope of Testing: The primary dataset used for evaluation is from MongoDB, which may not represent diverse real-world scenarios. Broader testing across varied datasets and industries could strengthen the claims.
Technical Jargon: While thorough, the explanations are heavily technical and may pose a barrier to readers unfamiliar with statistical concepts or performance monitoring.
Potential Over-reliance on Assumptions: The use of historical data to establish baselines assumes data stationarity and normality, which may not hold true in all dynamic environments.
Limited Exploration of Future Change Point Detection: While the concept of future change point prediction is introduced, its practical implementation and effectiveness remain underexplored.
API Accessibility Details: The paper lacks comprehensive information on API performance, scalability, and robustness in high-throughput environments, which are critical for enterprise adoption.
The paper presents a robust framework for detecting and forecasting change points in performance data using SETDS and the Perfomalist tool. Its strengths lie in methodological innovation and practical application. However, a deeper evaluation against competing methods, broader testing, and further elaboration on advanced features would enhance its impact and applicability.
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
The research paper was accepted for ORAL PRESENTATION at ICTDsC 2024 in India.
The abstract is below.
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
I just came across an article about him, posthumously, in his blessed memory - IN MEMORY OF IGOR BORISOVICH CHELPANOV (По русски)
It’s interesting that I noticed in this block of mine that he is my last authority HERE, 3 months after his death, which I only found out about now (4 years after..).
He had the greatest talent - Teacher of PhD students. I found him myself after a presentation (about the dynamics of robot grasping devises) made by one of his students, S.N. Kolpashnikov.
This was a turning point in my career (he was my dissertation supervisor) and my entire professional life!
I am immensely grateful to Igor Borisovich and remember him forever!
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
Our presentation (with Jignesh Shah) was accepted for www.CMGimpact.com
Scale in Clouds
What, How, Where, Why and When to Scale
Igor Trubin, Jignesh Shah - Capital One bank
ABSTRACT
Presentation includes the following discussion themes.
What to scale: servers, databases, containers, load balancers.
How to scale: horizontally/rightsizing, vertically, manually, automatically, ML based, predictive, serverless.
Where to scale: AWS (ASG,ECS, EKS, ELB), AZURE, GCP, K8s.
Why to scale: cost optimization, incidents avoidance, seasonality.
When to scale: auto-scaling policies and parameters, pre-warming to fight latency, correlating with business/app drivers.
Presentation includes a user case study of scaling parameters optimization: monitoring, modeling and balancing vertical and horizontal scaling, calculating optimal initial/desired cluster size and more.
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
ME: I have CSV table and need a code to convert that to dataframe.
GPT: Sure! Here is some code that will read a CSV file into a dataframe in R:
# set the working directory to the folder where your CSV file is located
setwd("/path/to/folder")
# read the CSV file into a dataframe
mydata <- read.csv("mycsvfile.csv", header = TRUE)
# view the dataframe
mydata
In this code, you will need to replace "/path/to/folder" with the actual path to the folder where your CSV file is located, and "mycsvfile.csv" with the actual name of your CSV file.
The read.csv() function reads a CSV file and creates a dataframe from it. The header = TRUE argument tells R that the first row of the CSV file contains column names.
After running this code, you should have a dataframe called mydata that contains the data from your CSV file. You can view the dataframe by simply typing mydata into the R console.
ME: I know that, but what is I have no ability to use file system? No read.csv, no write.csv, just a coma separated text to code like the following:
first_column <- c("value_1", "value_2", ...)
second_column <- c("value_1", "value_2", ...)
df <- data.frame(first_column, second_column)
GPT: I see! Here's an example of how you could create a dataframe in R from comma-separated text using the format you provided:
lua
Copy code
# sample comma-separated text
text <- "value_1, value_2, value_3
value_4, value_5, value_6
value_7, value_8, value_9"
# split the text into separate lines
lines <- strsplit(text, "\n")[[1]]
# split each line into separate values
values <- lapply(lines, function(x) strsplit(x, ", ")[[1]])
# create a dataframe from the values
df <- data.frame(matrix(unlist(values), nrow=length(lines), byrow=TRUE))
# add column names to the dataframe
colnames(df) <- c("first_column", "second_column", "third_column")
# view the dataframe
In this code, you would need to replace the text variable with your own comma-separated text. The strsplit() function is used to split the text into lines and then into separate values. The lapply() function is used to apply the strsplit() function to each line of the text.
The data.frame() function is used to create a dataframe from the values. The matrix() function is used to reshape the values into a matrix with the appropriate dimensions.
Finally, the colnames() function is used to add column names to the dataframe. You would need to replace the column names in the colnames() function with the appropriate column names for your data.
____
I have tested that and that is not working well.
By googling I got better suggestion:
https://sparkbyexamples.com/r-programming/different-ways-to-create-a-dataframe-in-r/
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
My SETDS (Statistical Exception and Trend Detection System) method was created about 20 years ago.
Playing with OpenAI https://chat.openai.com/chat I was giving the following information:
"SETDS (Split, Extract, Test, Decide, and Score) is a method for anomaly detection that was developed by researchers at Amazon Web Services (AWS). The method involves the following steps:
Split: The data is split into a training set and a testing set.
Extract: Features are extracted from the training set.
Test: A model is trained on the training set and tested on the testing set.
Decide: Anomaly scores are calculated for each data point in the testing set based on the model's performance.
Score: The anomaly scores are used to identify data points that are likely to be anomalous.
The SETDS method is designed to be fast and efficient, and it has been used in a number of applications, including detecting anomalies in log data and in real-time streaming data. It is one of many methods that can be used for anomaly detection, and the suitability of the method will depend on the specific characteristics of the data and the goals of the analysis."
+++++++++++++++++
Interesting that my SETDS also does some kind of scoring by calculating EV - Exception Value.
Also interesting that I was not able to verify by Google search the information AI bot chat provided....
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
My presentation was accepted for CMG Impact'23 (www.CMGimpact.com ) conference (Orlando, FL, Feb. 21-23).
ABSTRACT:
All cloud objects (EC2, RDS, EBS, ECS/Fargate, K8s, Lambda) are elastic and ephemeral. It is a real problem to understand, analyze and predict their behavior. But it is really needed for Cost optimization and Capacity management. The essential requirement to do that is the system performance data. The raw data is collected by observability tools (CloudWatch, DataDog or NewRelic), but it is big and messy.
The presentation is to explain and demonstrate:
- How that should be aggregated and summarize addressing the issue of jumping workload from one cluster to another due to rehydration, releases and failovers.
- How the data should/are to be cleaned by anomaly and change point detection without generating false negatives like seasonality.
- How to summarize the data to avoid sinking in granularity.
- How to interpret the data to do cost and capacity usage assessments.
- Finally how to use that clean, aggregated and summarized data for Capacity Management by using ML/Predictive analytics.
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
The paper about using #Perfomalist "Change Point Detection for #MongoDB Time Series Performance Regression" was cited in the following paper: "Estimating Breakpoints in Piecewise Linear Regression Using #MachineLearning Methods", where our method was mentioned as " … offer a hybrid change point detection system..."
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
Online conference program https://icpe2022.spec.org/program_files/schedule/ scheduled our following presentations:
Poster & Demo (Monday - April 11, 2022, 5:15pm )
André Bauer, Mark Leznik, Md Shahriar Iqbal, Daniel Seybold, Igor Trubin, Benjamin Erb, Jörg Domaschka and Pooyan Jamshidi. SPEC Research — Introducing the Predictive Data Analytics Working Group
Data Challenge (Tuesday - April 12,, 4:15pm - 4:55pm)
Md Shahriar Iqbal, Mark Leznik, Igor Trubin, Arne Lochner, Pooyan Jamshidi and André Bauer. Change Point Detection for MongoDB Time Series Performance Regression
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
TITLE: Change Point Detection for MongoDB Time Series Performance Regression
AUTHORS: Md Shahriar Iqbal, Mark Leznik, Igor Trubin, Arne Lochner, Pooyan Jamshidi and André Bauer
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin
The presentation starts with the short overview of the classical statistical process control (SPC)-based anomaly detection techniques and tools including Multivariate Adaptive Statistical Filtering (MASF); Statistical Exception and Trend Detection System (SETDS), Exception Value (EV) meta-metric-based change point detection; control charts; business driven massive prediction and methods of using them to manage large-scale systems such as on-prem servers fleet or massive clouds. Then, the presentation is focused on modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections.
He started in 1979 as IBM/370 system engineer. In 1986 he got his PhD. in Robotics at St. Petersburg Technical University (Russia) and then worked as a professor teaching CAD/CAM, Robotics for 12 years. He published 30+ papers and made several presentations for conferences related to the Robotics and Artificial Intelligent fields. In 1999 he moved to the US, worked at Capital One bank as a Capacity Planner. His first CMG.org paper was written and presented in 2001. The next one, "Exception Detection System Based on MASF Technique," won a Best Paper award at CMG'02 and was presented at UKCMG'03 in Oxford, England. He made other tech. presentations at IBM z/Series Expo, SPEC.org, Southern and Central Europe CMG and ran several workshops covering his original method of Anomaly and Change Point Detection (Perfomalist.com). Author of “Performance Anomaly Detection” class (at CMG.com). Worked 2 years as the Capacity team lead for IBM, worked for SunTrust Bank for 3 years and then at IBM for 3 years as Sr. IT Architect. Now he works for Capital One bank as IT Manager at the Cloud Engineering and since 2015 he is a member of CMG.org Board of Directors. Runs UT channel iTrubin