Popular Post

_

Friday, January 21, 2022

Panel Discussion: Roadmap for Cultivating Performance-Aware Software Engineers

 

"#CloudServers Rightsizing with #Seasonality Adjustments" - my presentation at CMG IMPACT conference (#CMGnews)


Feb 4, 2022 12:15 Virtual at https://cmgimpact.com/sessions-schedule/

Thursday, January 6, 2022

"Performance Anomaly and Change Point Detection for Large-Scale System Management" - my paper published at Springer

 


Intelligent Sustainable Systems pp 403-407Cite as

Performance Anomaly and Change Point Detection for Large-Scale System Management

Conference paper
  • 1Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 334)

Abstract

The presentation starts with the short overview of the classical statistical process control (SPC)-based anomaly detection techniques and tools including Multivariate Adaptive Statistical Filtering (MASF); Statistical Exception and Trend Detection System (SETDS), Exception Value (EV) meta-metric-based change point detection; control charts; business driven massive prediction and methods of using them to manage large-scale systems such as on-prem servers fleet or massive clouds. Then, the presentation is focused on modern techniques of anomaly and normality detection, such as deep learning and entropy-based anomalous pattern detections.

Keywords

Anomaly detection Change point detection Business driven forecast Control chart Deep Learning Entropy analysis 

References

  1. 1.
    Trubin, I.: Exception based modeling and forecasting. In: Proceedings of Computer Measurement Group (2008)Google Scholar
  2. 2.
    Jeffrey Buzen, F., Annie Shum, S.: MASF—multivariate adaptive statistical filtering. In: Proceedings of Computer Measurement Group (1995)Google Scholar
  3. 3.
    Trubin, I.: Review of IT control chart. CIS J. 4(11), 2079–8407 (2013)Google Scholar
  4. 4.
    Perfomalist Homepage, http://www.perfomalist.com. Last accessed on 10 June 2021
  5. 5.
    Trubin, I., et al.: Systems and methods for modeling computer resource metrics. US Patent 10,437,697 (2016)Google Scholar
  6. 6.
    Trubin, I.: Capturing workload pathology by statistical exception detection. In: Proceedings of Computer Measurement Group (2005)Google Scholar
  7. 7.
    Loboz, C.: Quantifying imbalance in computer systems. In: Proceedings of Computer Measurement Group (2011)Google Scholar